This page was automatically generated from a Jupyter notebook. Find the original here.
Population Inference on GWTC-3#
The thrid gravitational-wave transient catalog GWTC-3 includes all compact binary coalescences observed during Advanced LIGO/Virgo’s first three oberving runs.
GWPopulation
builds upon Bilby (arXiv:1811.02042) to provide simple, modular, user-friendly, population inference.
There are many implemented models and an example of defining custom models is included below. In this example we use:
A mass distribution in primary mass and mass ratio from Talbot & Thrane (2018) (arXiv:1801:02699). This is equivalent to the
PowerLaw + Peak
model used in LVK analyses without the low-mass smoothing for computational efficiency.Half-Gaussian + isotropic spin tilt distribution from Talbot & Thrane (2017) (arXiv:1704.08370).
Beta spin magnitude distribution from Wysocki+ (2018) (arXiv:1805:06442).
Each of these are also available with independent but identically distributed spins.
Redshift evolution model as in Fishbach+ (2018) (arXiv:1805.10270).
Setup
If you’re using colab.research.google.com you will want to choose a GPU-accelerated runtime (I’m going to use a T4 GPU).
“runtime”->”change runtime type”->”Hardware accelerator = GPU”
Note
This is largely reproduced from the demonstration for wcosmo except with the cosmology fixed.
Install some needed packages#
All of the dependencies for this are integrated into GWPopulation
. These include Bilby
and dynesty
for sampling.
[1]:
!pip install gwpopulation --quiet --progress-bar off
Download data#
We need to download the data for the events and simmulated “injections” used to characterize the detection sensitivity.
Event posteriors#
We’re using the posteriors from the GWTC-3 data release in a pre-processed format.
The file was produced by gwpopulation-pipe to reduce the many GB of posterior sample files to a single ~30Mb file.
The choice of events in this file was not very careful and should only be considered qualitatively correct.
The data file can be found here. The original data can be found at zenodo:5546663 and zenodo:6513631 along with citation information.
Sensitivity injections#
Again I have pre-processed the full injection set using gwpopulation-pipe
to reduce the filesize. The original data is available at zenodo:7890398 along with citation information.
[2]:
!gdown https://drive.google.com/uc?id=16gStLIjt65gWBkw-gNOVUqNbZ89q8CLF
!gdown https://drive.google.com/uc?id=10pevUCM3V2-D-bROFEMAcTJsX_9RzeM6
Downloading...
From: https://drive.google.com/uc?id=16gStLIjt65gWBkw-gNOVUqNbZ89q8CLF
To: /Users/colmtalbot/modules/gwpopulation/examples/gwtc-3-injections.pkl
100%|██████████████████████████████████████| 2.69M/2.69M [00:00<00:00, 75.2MB/s]
Downloading...
From: https://drive.google.com/uc?id=10pevUCM3V2-D-bROFEMAcTJsX_9RzeM6
To: /Users/colmtalbot/modules/gwpopulation/examples/gwtc-3-samples.pkl
100%|██████████████████████████████████████| 36.4M/36.4M [00:00<00:00, 60.6MB/s]
Imports#
Import the packages required for the script. We also set the backend for array operations to jax
which allows us to take advantage of just-in-time (jit) compilation in addition to GPU-parallelisation when available.
[3]:
import bilby as bb
import gwpopulation as gwpop
import jax
import matplotlib.pyplot as plt
import pandas as pd
from bilby.core.prior import PriorDict, Uniform
from gwpopulation.experimental.jax import JittedLikelihood, NonCachingModel
gwpop.set_backend("jax")
xp = gwpop.utils.xp
%matplotlib inline
Load posteriors#
We remove two events from the file that shouldn’t be there that have NS-like secondaries as we are just interested in BBHs for this demonstration.
[4]:
posteriors = pd.read_pickle("gwtc-3-samples.pkl")
del posteriors[15]
del posteriors[38]
Load injections#
Load the injections used to characterize the sensitivity of the gravitaitonal-wave survey.
[5]:
import dill
with open("gwtc-3-injections.pkl", "rb") as ff:
injections = dill.load(ff)
Define some models and the likelihood#
We need to define Bilby
Model
objects for the numerator and denominator independently as these cache some computations interally.
We create a model that uses a cosmology fixed to the Planck 2015 values for flat Lambda CDM.
The HyperparameterLikelihood
marginalises over the local merger rate, with a uniform-in-log prior. The posterior for the merger rate can be recovered in post-processing.
We provide:
posteriors
: a list ofpandas
DataFrames.hyper_prior
: our population model, as defined above.selection_function
: anything which evaluates the selection function.
We can also provide:
conversion_function
: this converts between the parameters we sample in and those needed by the model, e.g., for sampling in the mean and variance of the beta distribution.max_samples
: the maximum number of samples to use from each posterior, this defaults to the length of the shortest posterior.
[6]:
model = NonCachingModel(
model_functions=[
gwpop.models.mass.two_component_primary_mass_ratio,
gwpop.models.spin.iid_spin,
gwpop.models.redshift.PowerLawRedshift(cosmo_model="Planck15"),
],
)
vt = gwpop.vt.ResamplingVT(model=model, data=injections, n_events=len(posteriors))
likelihood = gwpop.hyperpe.HyperparameterLikelihood(
posteriors=posteriors,
hyper_prior=model,
selection_function=vt,
)
Define our prior#
The mass model has eight parameters that we vary that are described in arXiv:1801:02699. This model is sometimes referred to as “PowerLaw+Peak”
The spin magnitude model is a Beta
distribution with the usual parameterization, and the spin orientation model is a mixure of a uniform component and a truncated Gaussian that peaks at aligned spin. This combination is sometimes referred to as “Default”.
For redshift we use a model that looks like
[7]:
priors = PriorDict()
# mass
priors["alpha"] = Uniform(minimum=-2, maximum=4, latex_label="$\\alpha$")
priors["beta"] = Uniform(minimum=-4, maximum=12, latex_label="$\\beta$")
priors["mmin"] = Uniform(minimum=2, maximum=2.5, latex_label="$m_{\\min}$")
priors["mmax"] = Uniform(minimum=80, maximum=100, latex_label="$m_{\\max}$")
priors["lam"] = Uniform(minimum=0, maximum=1, latex_label="$\\lambda_{m}$")
priors["mpp"] = Uniform(minimum=10, maximum=50, latex_label="$\\mu_{m}$")
priors["sigpp"] = Uniform(minimum=1, maximum=10, latex_label="$\\sigma_{m}$")
priors["gaussian_mass_maximum"] = 100
# spin
priors["amax"] = 1
priors["alpha_chi"] = Uniform(minimum=1, maximum=6, latex_label="$\\alpha_{\\chi}$")
priors["beta_chi"] = Uniform(minimum=1, maximum=6, latex_label="$\\beta_{\\chi}$")
priors["xi_spin"] = Uniform(minimum=0, maximum=1, latex_label="$\\xi$")
priors["sigma_spin"] = Uniform(minimum=0.3, maximum=4, latex_label="$\\sigma$")
priors["lamb"] = Uniform(minimum=-1, maximum=10, latex_label="$\\lambda_{z}$")
Just-in-time compile#
We JIT compile the likelihood object before starting the sampler. This is done using the gwpopulation.experimental.jax.JittedLikelihood
class.
We then time the original likelihood object and the JIT-ed version. Note that we do two evaluations for each object as the first evaluation must compile the likelihood and so takes longer. (In addition to the JIT compilation, JAX
compiles GPU functionality at the first evaluation, but this is less extreme than the full JIT compilation.)
[8]:
parameters = priors.sample()
likelihood.parameters.update(parameters)
likelihood.log_likelihood_ratio()
%time print(likelihood.log_likelihood_ratio())
jit_likelihood = JittedLikelihood(likelihood)
jit_likelihood.parameters.update(parameters)
%time print(jit_likelihood.log_likelihood_ratio())
%time print(jit_likelihood.log_likelihood_ratio())
-273.6719945829451
CPU times: user 111 ms, sys: 36.2 ms, total: 147 ms
Wall time: 64 ms
-273.671994582945
CPU times: user 1.3 s, sys: 257 ms, total: 1.56 s
Wall time: 1.1 s
-273.671994582945
CPU times: user 50.4 ms, sys: 3.6 ms, total: 54 ms
Wall time: 15.7 ms
Run the sampler#
We’ll use the sampler dynesty
and use a small number of live points to reduce the runtime (total runtime should be approximately 5 minutes on T4 GPUs via Google colab). The settings here may not give publication quality results, a convergence test should be performed before making strong quantitative statements.
bilby
times a single likelihood evaluation before beginning the run, however, this isn’t well defined with JAX.
Note: sometimes this finds a high likelihood mode, likely due to breakdowns in the approximation used to estimate the likelihood. If you see dlogz > -190
, you should interrupt the execution and restart.
[9]:
result = bb.run_sampler(
likelihood=jit_likelihood,
priors=priors,
sampler="dynesty",
nlive=100,
label="cosmo",
sample="acceptance-walk",
naccept=5,
save="hdf5",
)
15:30 bilby INFO : Running for label 'cosmo', output will be saved to 'outdir'
15:30 bilby INFO : Analysis priors:
15:30 bilby INFO : alpha=Uniform(minimum=-2, maximum=4, name=None, latex_label='$\\alpha$', unit=None, boundary=None)
15:30 bilby INFO : beta=Uniform(minimum=-4, maximum=12, name=None, latex_label='$\\beta$', unit=None, boundary=None)
15:30 bilby INFO : mmin=Uniform(minimum=2, maximum=2.5, name=None, latex_label='$m_{\\min}$', unit=None, boundary=None)
15:30 bilby INFO : mmax=Uniform(minimum=80, maximum=100, name=None, latex_label='$m_{\\max}$', unit=None, boundary=None)
15:30 bilby INFO : lam=Uniform(minimum=0, maximum=1, name=None, latex_label='$\\lambda_{m}$', unit=None, boundary=None)
15:30 bilby INFO : mpp=Uniform(minimum=10, maximum=50, name=None, latex_label='$\\mu_{m}$', unit=None, boundary=None)
15:30 bilby INFO : sigpp=Uniform(minimum=1, maximum=10, name=None, latex_label='$\\sigma_{m}$', unit=None, boundary=None)
15:30 bilby INFO : alpha_chi=Uniform(minimum=1, maximum=6, name=None, latex_label='$\\alpha_{\\chi}$', unit=None, boundary=None)
15:30 bilby INFO : beta_chi=Uniform(minimum=1, maximum=6, name=None, latex_label='$\\beta_{\\chi}$', unit=None, boundary=None)
15:30 bilby INFO : xi_spin=Uniform(minimum=0, maximum=1, name=None, latex_label='$\\xi$', unit=None, boundary=None)
15:30 bilby INFO : sigma_spin=Uniform(minimum=0.3, maximum=4, name=None, latex_label='$\\sigma$', unit=None, boundary=None)
15:30 bilby INFO : lamb=Uniform(minimum=-1, maximum=10, name=None, latex_label='$\\lambda_{z}$', unit=None, boundary=None)
15:30 bilby INFO : gaussian_mass_maximum=100
15:30 bilby INFO : amax=1
15:30 bilby INFO : Analysis likelihood class: <class 'gwpopulation.experimental.jax.JittedLikelihood'>
15:30 bilby INFO : Analysis likelihood noise evidence: nan
15:30 bilby INFO : Single likelihood evaluation took 1.016e-04 s
15:30 bilby INFO : Using sampler Dynesty with kwargs {'nlive': 100, 'bound': 'live', 'sample': 'acceptance-walk', 'periodic': None, 'reflective': None, 'update_interval': 600, 'first_update': None, 'npdim': None, 'rstate': None, 'queue_size': 1, 'pool': None, 'use_pool': None, 'live_points': None, 'logl_args': None, 'logl_kwargs': None, 'ptform_args': None, 'ptform_kwargs': None, 'gradient': None, 'grad_args': None, 'grad_kwargs': None, 'compute_jac': False, 'enlarge': None, 'bootstrap': None, 'walks': 100, 'facc': 0.2, 'slices': None, 'fmove': 0.9, 'max_move': 100, 'update_func': None, 'ncdim': None, 'blob': False, 'save_history': False, 'history_filename': None, 'maxiter': None, 'maxcall': None, 'dlogz': 0.1, 'logl_max': inf, 'n_effective': None, 'add_live': True, 'print_progress': True, 'print_func': <bound method Dynesty._print_func of <bilby.core.sampler.dynesty.Dynesty object at 0x323abb280>>, 'save_bounds': False, 'checkpoint_file': None, 'checkpoint_every': 60, 'resume': False}
15:30 bilby INFO : Checkpoint every check_point_delta_t = 600s
15:30 bilby INFO : Using dynesty version 2.1.2
15:30 bilby INFO : Using the bilby-implemented rwalk sampling with an average of 5 accepted steps per MCMC and maximum length 5000
15:30 bilby INFO : Resume file outdir/cosmo_resume.pickle does not exist.
15:30 bilby INFO : Generating initial points from the prior
15:37 bilby INFO : Written checkpoint file outdir/cosmo_resume.pickle
15:37 bilby INFO : Rejection sampling nested samples to obtain 677 posterior samples
15:37 bilby INFO : Sampling time: 0:07:00.040342
15:37 bilby INFO : Summary of results:
nsamples: 677
ln_noise_evidence: nan
ln_evidence: nan +/- 0.398
ln_bayes_factor: -199.070 +/- 0.398
Plot some posteriors#
We can look at the posteriors on some of the parameters, here the cosmology parameters and the location of the mass peak and the redshift evolution.
We see that the value of the Hubble constant is strongly correlated with the location of the peak in the mass distribution as has been noted elsewhere.
We also include the values of the cosmology parameters reported in the Planck15
cosmology for reference.
[10]:
_ = result.plot_corner(save=False, parameters=["mpp", "sigpp", "lamb"])
Post-processing checks#
As mentioned above, hierarchical analyses performed in this way are susceptible to systematic bias due to Monte Carlo error. To ensure we are not suffering from this issue, we compute the variance in each of our Monte Carlo integrals along with the total variance for each posterior sample. We then look at whether there are correlations between the log-likelihood, the variance, and the hyperparameters. If we see significant correlation between the variance and other quantities, it is a sign that our results may not be reliable.
[11]:
func = jax.jit(likelihood.generate_extra_statistics)
full_posterior = pd.DataFrame(
[func(parameters) for parameters in result.posterior.to_dict(orient="records")]
).astype(float)
full_posterior.describe()
[11]:
alpha | alpha_chi | amax | beta | beta_chi | gaussian_mass_maximum | lam | lamb | ln_bf_0 | ln_bf_1 | ... | var_66 | var_67 | var_68 | var_69 | var_7 | var_70 | var_8 | var_9 | variance | xi_spin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 677.000000 | 677.000000 | 677.0 | 677.000000 | 677.000000 | 677.0 | 677.000000 | 677.000000 | 677.000000 | 677.000000 | ... | 677.000000 | 677.000000 | 677.000000 | 677.000000 | 677.000000 | 677.000000 | 677.000000 | 677.000000 | 677.000000 | 677.000000 |
mean | 2.776850 | 1.712533 | 1.0 | 2.059456 | 4.765464 | 100.0 | 0.036284 | 2.259357 | -10.416216 | -10.662652 | ... | 0.001103 | 0.000925 | 0.001178 | 0.000479 | 0.000318 | 0.000802 | 0.000804 | 0.000955 | 1.552220 | 0.645813 |
std | 0.229683 | 0.441259 | 0.0 | 1.067155 | 0.873841 | 0.0 | 0.027913 | 1.022998 | 1.306954 | 1.029802 | ... | 0.000654 | 0.000457 | 0.000757 | 0.000260 | 0.000151 | 0.000327 | 0.000378 | 0.000413 | 0.819144 | 0.240400 |
min | 2.050729 | 1.001482 | 1.0 | -0.659842 | 1.862621 | 100.0 | 0.004847 | -0.784904 | -14.955488 | -14.237053 | ... | 0.000221 | 0.000202 | 0.000293 | 0.000154 | 0.000088 | 0.000136 | 0.000215 | 0.000267 | 0.336554 | 0.001326 |
25% | 2.621572 | 1.369770 | 1.0 | 1.397719 | 4.156605 | 100.0 | 0.019076 | 1.660442 | -11.316283 | -11.319475 | ... | 0.000682 | 0.000642 | 0.000735 | 0.000339 | 0.000228 | 0.000601 | 0.000570 | 0.000683 | 1.036452 | 0.470641 |
50% | 2.784653 | 1.648453 | 1.0 | 1.915804 | 4.899788 | 100.0 | 0.028897 | 2.268566 | -10.398208 | -10.665089 | ... | 0.000914 | 0.000830 | 0.001011 | 0.000424 | 0.000282 | 0.000750 | 0.000721 | 0.000870 | 1.342318 | 0.691562 |
75% | 2.937532 | 2.008287 | 1.0 | 2.565101 | 5.496479 | 100.0 | 0.046055 | 2.986201 | -9.532608 | -10.007681 | ... | 0.001382 | 0.001077 | 0.001412 | 0.000544 | 0.000370 | 0.000951 | 0.000934 | 0.001141 | 1.818107 | 0.850433 |
max | 3.425676 | 3.318228 | 1.0 | 9.709659 | 5.994280 | 100.0 | 0.384039 | 5.247202 | -6.867461 | -7.933087 | ... | 0.005489 | 0.005247 | 0.009805 | 0.004341 | 0.001919 | 0.004697 | 0.004150 | 0.004305 | 6.894325 | 0.996642 |
8 rows × 161 columns
[12]:
full_posterior[result.search_parameter_keys + ["log_likelihood", "variance"]].corr()
[12]:
alpha | beta | mmin | mmax | lam | mpp | sigpp | alpha_chi | beta_chi | xi_spin | sigma_spin | lamb | log_likelihood | variance | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
alpha | 1.000000 | 0.018332 | 0.049273 | 0.165293 | -0.458561 | -0.096644 | 0.099342 | -0.039909 | 0.032705 | -0.067643 | 0.012180 | 0.616722 | 0.213035 | 0.082727 |
beta | 0.018332 | 1.000000 | -0.030397 | -0.108583 | -0.049465 | -0.047072 | -0.011391 | 0.029325 | -0.030322 | 0.028157 | -0.041763 | -0.138196 | -0.157355 | 0.144190 |
mmin | 0.049273 | -0.030397 | 1.000000 | 0.067611 | 0.026643 | 0.028545 | 0.012661 | 0.004106 | -0.055865 | 0.003692 | 0.097444 | -0.006103 | 0.035900 | -0.037539 |
mmax | 0.165293 | -0.108583 | 0.067611 | 1.000000 | 0.025335 | -0.076469 | 0.090215 | 0.028796 | 0.035281 | 0.023455 | 0.128840 | 0.069579 | -0.168815 | -0.039724 |
lam | -0.458561 | -0.049465 | 0.026643 | 0.025335 | 1.000000 | -0.552935 | 0.450844 | 0.064456 | 0.012491 | -0.030650 | 0.035253 | -0.224907 | -0.498883 | -0.082098 |
mpp | -0.096644 | -0.047072 | 0.028545 | -0.076469 | -0.552935 | 1.000000 | -0.811752 | -0.147834 | -0.025253 | 0.099803 | -0.151705 | -0.222503 | 0.509110 | 0.343512 |
sigpp | 0.099342 | -0.011391 | 0.012661 | 0.090215 | 0.450844 | -0.811752 | 1.000000 | 0.044627 | -0.046373 | -0.076903 | 0.129302 | 0.093172 | -0.535496 | -0.463671 |
alpha_chi | -0.039909 | 0.029325 | 0.004106 | 0.028796 | 0.064456 | -0.147834 | 0.044627 | 1.000000 | 0.616715 | -0.014138 | 0.295180 | 0.032030 | -0.172487 | -0.193389 |
beta_chi | 0.032705 | -0.030322 | -0.055865 | 0.035281 | 0.012491 | -0.025253 | -0.046373 | 0.616715 | 1.000000 | 0.053659 | -0.020179 | 0.085114 | 0.138990 | 0.312379 |
xi_spin | -0.067643 | 0.028157 | 0.003692 | 0.023455 | -0.030650 | 0.099803 | -0.076903 | -0.014138 | 0.053659 | 1.000000 | 0.047134 | -0.020606 | 0.200745 | 0.104602 |
sigma_spin | 0.012180 | -0.041763 | 0.097444 | 0.128840 | 0.035253 | -0.151705 | 0.129302 | 0.295180 | -0.020179 | 0.047134 | 1.000000 | -0.005804 | -0.341574 | -0.358150 |
lamb | 0.616722 | -0.138196 | -0.006103 | 0.069579 | -0.224907 | -0.222503 | 0.093172 | 0.032030 | 0.085114 | -0.020606 | -0.005804 | 1.000000 | 0.185433 | 0.040097 |
log_likelihood | 0.213035 | -0.157355 | 0.035900 | -0.168815 | -0.498883 | 0.509110 | -0.535496 | -0.172487 | 0.138990 | 0.200745 | -0.341574 | 0.185433 | 1.000000 | 0.258472 |
variance | 0.082727 | 0.144190 | -0.037539 | -0.039724 | -0.082098 | 0.343512 | -0.463671 | -0.193389 | 0.312379 | 0.104602 | -0.358150 | 0.040097 | 0.258472 | 1.000000 |
The most strongly correlated variables are the ones that control the position and width of the peak in the mass distribution. Below we show a scatter matrix for these variables. The variance for this analysis has a tail up to ~4 and so may be non-trivially biased. The simplest method to resolve this is by using more samples for all of the Monte Carlo integrals.
[13]:
pd.plotting.scatter_matrix(
full_posterior[["mpp", "sigpp", "log_likelihood", "variance"]],
alpha=0.1,
)
plt.show()
plt.close()
[ ]: