{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Compare memory calculation codes\n", "\n", "Since the initial release of `GWMemory` other packages to compute the waveform have been released.\n", "For example, the `sxs` package has a method to compute memory.\n", "\n", "In this notebook we compare the performance of the two packages for a test example.\n", "\n", "*NOTE*: the `sxs` code is able to include additional memory terms beyond the dominant energy term considered here.\n", "\n", "Thanks to Scott Field for suggesting this test." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import gwsurrogate as gws\n", "from gwmemory import time_domain_memory as tdm\n", "from gwtools import sxs_memory\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mpl.rcParams[\"font.family\"] = \"serif\"\n", "mpl.rcParams[\"font.serif\"] = \"Computer Modern Roman\"\n", "mpl.rcParams[\"font.size\"] = 20\n", "mpl.rcParams[\"text.usetex\"] = True\n", "mpl.rcParams[\"grid.alpha\"] = 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create the time domain model. We do this with the `gwsurrogate package`.\n", "\n", "For this case, we will use a binary with mass ratio 8 and large aligned spins." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = gws.LoadSurrogate(\"NRHybSur3dq8\")\n", "chi0 = [0, 0, 0.8]\n", "t = np.arange(-1000, 100, 0.01)\n", "t, h, dyn = model(8, chi0, chi0, times=t, f_low=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute the memory with the two packages.\n", "\n", "For comparison, we record the time taken for each code." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"GWMemory time:\")\n", "%time h_mem, times = tdm(h_lm=h, times=t, l_max=4)\n", "print(\"SXS time:\")\n", "%time h_mem_sxs, times_sxs = sxs_memory(h, t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we plot the various memory modes along with the mismatches between the waveforms obtained with both methods.\n", "\n", "There are some differences in strongly subdominant modes, this is likely due to numerical error accumulating for small amplitude modes.\n", "We explicitly skip these in the plotting below." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "modes = set(h_mem.keys()).intersection(h_mem_sxs.keys())\n", "for mode in modes.copy():\n", " if max(abs(h_mem[mode])) < 1e-15:\n", " modes.remove(mode)\n", "\n", "fig, axes = plt.subplots(nrows=4, ncols=3, sharex=True, figsize=(20, 16))\n", "for ii, mode in enumerate(modes):\n", " gwmem = h_mem[mode]\n", " sxsmem = h_mem_sxs[mode]\n", " overlap = (\n", " np.vdot(gwmem, sxsmem)\n", " / np.vdot(gwmem, gwmem) ** 0.5\n", " / np.vdot(sxsmem, sxsmem) ** 0.5\n", " )\n", "\n", " ax = axes[ii // 3, ii % 3]\n", " ax.plot(times, gwmem.real, label=\"GWMemory\")\n", " ax.plot(times_sxs, sxsmem.real, linestyle=\":\", label=\"SXS\")\n", " ax.annotate(f\"Mode: ({mode[0]}, {mode[1]})\", (0.03, 0.75), xycoords=\"axes fraction\")\n", " ax.annotate(\n", " f\"Mismatch: {1 - overlap.real:.1e}\", (0.35, 0.75), xycoords=\"axes fraction\"\n", " )\n", "axes[0, 0].legend(loc=\"lower left\")\n", "axes[-1, 0].set_xlabel(\"$t [M]$\")\n", "axes[-1, 1].set_xlabel(\"$t [M]$\")\n", "axes[-1, 2].set_xlabel(\"$t [M]$\")\n", "plt.tight_layout()\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 0 }